
Exercise Set Solutions #2
“Discrete Mathematics” (2025)

E1. (a) Prove that
(
n
k

)
≤

(
n

k+1

)
when 1 ≤ k < ⌈n/2⌉.

Solution: We simply write what we wish to prove as(
n

k

)
=

n!

k!(n− k)!
≤

(
n

k + 1

)
=

n!

(k + 1)!(n− k − 1)!

This is equivalent to
k + 1 ≤ n− k ⇐⇒ 2k + 1 ≤ n.

This holds exactly when 1 ≤ k < ⌈n/2⌉, as desired.

(b) For which values of n and k is
(

n
k+1

)
twice the previous entry in the Pascal Triangle (i.e. the

entry to its left)?

Solution: The desired property is equivalent to(
n

k + 1

)
= 2

(
n

k

)
⇐⇒ 2(k + 1) = n− k ⇐⇒ 3k + 2 = n

E2. Prove the following equations.

(a)
n∑

i=0

(
n

i

)2

=

(
2n

n

)
.

Solution: Note that
(
2n
n

)
is the number of ways to choose n elements of the set [2n]. Let

k ∈ [n], then
(
n
k

)
is the number of ways to choose k elements from [n]. Furthermore,

(
n

n−k

)
is the number of possibilities to choose n− k elements from {n+ 1, . . . , 2n}. Hence, there
are

(
n
k

)(
n

n−k

)
ways to choose n elements from [2n] such that k elements are in [n] and the

remaining n − k elements are in {n + 1, . . . , 2n}. Moreover,
(
n
k

)(
n

n−k

)
=

(
n
k

)2
. In order

to obtain the number of possibilities to choose n elements of [2n], we have to sum over
k = 0, . . . , n. We have shown that the number of ways to obtain n elements of [2n] is equal

to
∑n

i=0

(
n
i

)2
. Therefore,

∑n
i=0

(
n
i

)2
=

(
2n
n

)
holds.

Next we give a further way to prove the equality. For this we consider the coefficient
of xn in (1 + x)2n. Due to Theorem 1.8 in the lecture, the coefficient is equal to

(
2n
n

)
.

Furthermore, due to Theorem 1.8 we know that (1 + x)2n = ((1 + x)n)2 =
(∑n

i=0

(
n
i

)
xi
)2
.

Since
(
n
i

)(
n

n−i

)
=

(
n
i

)2
, the coefficient of xn in

(∑n
i=0

(
n
i

)
xi
)2

is equal to
∑n

i=0

(
n
i

)2
.

(b)
n∑

k=q

(
n

k

)(
k

q

)
= 2n−q

(
n

q

)



Solution: Consider the set

{(A,B)|A ⊆ B ⊆ [n], |A| = q, |B| ≥ q}

What is the cardinality of this set? One way to see the cardinality is to write it as

n⊔
k=q

{(A,B)|A ⊆ B ⊆ [n], |B| = k, |A| = q}.

This gives us the left-hand side of the equation. The second way to count this is to write
it as

{(A,A ⊔ C)|A ⊆ [n], |A| = q, C ⊆ [n]\A}.

This gives us the right side of the equation since |[n]\A| = n − q ⇒ C can be chosen in
2n−q ways.

E3. Show that
(
4n3 − 3n+ 2023

) (
n6 + 3n4 + 256

)
= O

(
n9

)
Solution: Notice that for n ≥ 2023

1

n9
|
(
4n3 − 3n+ 2023

) (
n6 + 3n4 + 256

)
| = |

(
4− 3

1

n2
+ 2023

1

n3

)(
1 + 3

1

n2
+ 256

1

n6

)
|

≤ (4 + 1 + 1) · (1 + 1 + 1)

= 18.

Thus,
(
4n3 − 3n+ 2023

) (
n6 + 3n4 + 256

)
= O

(
n9

)
.

E4. Prove the following equations

(a) na = O (an) for any a > 1.

Solution: In order to prove na = O (an) for any a > 1, we will show that an ≥ na

for sufficient large n. Note that an ≥ na ⇔ n ln a ≥ a lnn. Since limn→∞
n ln a
a lnn = ∞,

na = O (an) holds.

(b) na = O
(
nb
)
for any a ≤ b.

Solution: nb = nanb−a. Since b − a ≥ 1, nb−a ≥ 1.Therefore na ≤ nb and thus na =
O
(
nb
)
.

(c) 2n + n2 = O (2n).

Solution: Note that 2n + n2 ≤ 2 · 2n for all n ≥ 4. Therefore 2n + n2 = O (2n).

(d) n
logn = o(n).

Solution: limn→∞
n

logn

n = limn→∞
1

logn = 0, implies n
logn = o(n).
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E5. Suppose there are 20 students and each student has to choose a number in [100]. What are the
chances that all students choose a different number? If the number of students is increased, does
this probability increase or decrease? How many students should there be so that the probability
that two students have chosen the same number is at least 50% ?

Solution: Due to Proposition 1.7 of the lecture, the probabilty that all 20 students choose
a different number in [100] is 100!/80!

10020
= 0.130399501820471, hence the probablity is around

13.04%. When the number of students increase, the coincidence that two students choose the
same number would also increase and therefore the probability that they all choose different
numbers would decrease. In general, the probabilty that n students each choose a number in
[100] without two people choosing the same number is

pn =
100 · 99 · 98 · · · · · · (100− n)

100n

Clearly pn =
(
100−n
100

)
pn−1 < pn. With this, the chance that 2 out of 12 students share the

same number in [100] is 1 − 100!
88!10012

≈ 0.4968466 . Whereas for 13 students the probability is

1 − 100!
87!10013

≈ 0.55722. Hence, if there are at least 13 students the chances that two of them
share the same number is at least 50%.

E6. Use Stirling’s formula to estimate 1 · 3 · 5 · . . . · (2n− 1).

Solution: Note that

1 · 3 · 5 · . . . · (2n− 1) =
(2n)!

2 · 4 · 6 . . . · 2n
=

(2n)!

2nn!

Now we can use Stirlings formula, i.e. n! ∼
√
2πn

(
n
e

)n
. Note that this implies 1

n! ∼
1√
2πn

(
e
n

)n
.

We obtain
(2n)!

2nn!
∼

√
4πn

(
2n
e

)2n
2n

√
2πn

(
n
e

)n =
21/2

√
2πn22n

(
n
e

)2n
2n

√
2πn

(
n
e

)n = 2n+1/2
(n
e

)n

E7. Find a combinatorial proof of the following identity∑
k≤n

k even

(
n

k

)
=

∑
k≤n
k odd

(
n

k

)

Solution: The left-hand side above is simply the number of subsets of [ n ] with an even
number of elements, and the right-hand side is the number of subsets with an odd number of
elements. Let n then be odd. Since n is odd, selecting a set A with |A| even is the same as
selecting Ac with |Ac| odd, and the identity is proved.

Now, for n even, we observe the following: let A be a subset of [n] with an even number of
elements. If n ∈ A, then A\{n} is a set of odd cardinality within [n− 1], and if n /∈ A, then A
is a set of even cardinality within [n− 1]. Doing the same but with sets of odd cardinality, we
obtain that the number of sets A with even cardinality in [n] is the same as the number of sets
B with odd cardinality in [n], as desired.
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